Answer:
Therefore the number of proton in the given system is 450.
Explanation:
Given that, a system has 1223 particles.
Let x number of proton be present in the system.
Then the number of electron is =(1223-x)
The charge of a proton is = 1.602×10⁻¹⁹ C
The charge of an electron = - 1.602×10⁻¹⁹ C
The charge of x protons is =( 1.6×10⁻¹⁹×x) C
The charge of (1223-x) electrons is = - 1.6×10⁻¹⁹ (1223-x) C
According to the problem,
(1.6×10⁻¹⁹×x) +{ - 1.6×10⁻¹⁹ (1223-x)}= -5.328×10⁻¹⁷
⇒1.6×10⁻¹⁹(x-1223+x)=-5.328×10⁻¹⁷
[tex]\Rightarrow (2x-1223)=\frac{-5.328\times 10^{-17}}{1.6\times 10^{-19}}[/tex]
⇒2x-1223= -333
⇒2x= -333+1223
⇒2x=900
[tex]\Rightarrow x=\frac{900}{2}[/tex]
⇒x=450
Therefore the number of proton is 450.