Respuesta :
Here is the full question:
Air containing 0.04% carbon dioxide is pumped into a room whose volume is 6000 ft3. The air is pumped in at a rate of 2000 ft3/min, and the circulated air is then pumped out at the same rate. If there is an initial concentration of 0.2% carbon dioxide, determine the subsequent amount in the room at any time.
What is the concentration at 10 minutes? (Round your answer to three decimal places.
Answer:
0.046 %
Explanation:
The rate-in;
[tex]R_{in}[/tex] [tex]= \frac{0.04}{100}*2000[/tex]
[tex]R_{in}[/tex] = 0.8
The rate-out
[tex]R_{out}[/tex] = [tex]\frac{A}{6000}*2000[/tex]
[tex]R_{out}[/tex] = [tex]\frac{A}{3}[/tex]
We can say that:
[tex]\frac{dA}{dt}=[/tex] [tex]0.8-\frac{A}{3}[/tex]
where;
A(0)= 0.2% × 6000
A(0)= 0.002 × 6000
A(0)= 12
[tex]\frac{dA}{dt} +\frac{A}{3} =0.8[/tex]
Integration of the above linear equation =
[tex]e^{\int\limits \frac {1}{3}dt } =[/tex] [tex]e^{\frac{1}{3}t[/tex]
so we have:
[tex]e^{\frac{1}{3}t}\frac{dA}{dt}} +\frac{1}{3}e^{\frac{1}{3}t}A[/tex] [tex]= 0.8e^{\frac{1}{3}t[/tex]
[tex]\frac{d}{dt}[e^{\frac{1}{3}t}A][/tex] [tex]= 0.8e^{\frac{1}{3}t[/tex]
[tex]Ae^{\frac{1}{3}t} =2.4e\frac{1}{3}t +C[/tex]
∴ [tex]A(t) = 2.4 +Ce^{-\frac{1}{3}t[/tex]
Since A(0) = 12
Then;
[tex]12 =2.4 + Ce^{-\frac{1}{3}}(0)[/tex]
[tex]C= 12-2.4[/tex]
[tex]C =9.6[/tex]
Hence;
[tex]A(t) = 2.4 +9.6e^{-\frac{t}{3}}[/tex]
[tex]A(0) = 2.4 +9.6e^{-\frac{10}{3}}[/tex]
[tex]A(t) = 2.74[/tex]
∴ the concentration at 10 minutes is ;
= [tex]\frac{2.74}{6000}*100[/tex]%
= 0.0456667 %
= 0.046% to three decimal places