contestada

Air containing 0.04% carbon dioxide is pumped into a room whose volume is 6000 ft3. The air is pumped in at a rate of 2000 ft3/min, and the circulated air is then pumped out at the same rate. If there is an initial concentration of 0.2% carbon dioxide, determine the subsequent amount in the room at any time.

Respuesta :

Here is the full question:

Air containing 0.04% carbon dioxide is pumped into a room whose volume is 6000 ft3. The air is pumped in at a rate of 2000 ft3/min, and the circulated air is then pumped out at the same rate. If there is an initial concentration of 0.2% carbon dioxide, determine the subsequent amount in the room at any time.

What is the concentration at 10 minutes? (Round your answer to three decimal places.

Answer:

0.046 %

Explanation:

The rate-in;

[tex]R_{in}[/tex] [tex]= \frac{0.04}{100}*2000[/tex]

[tex]R_{in}[/tex] = 0.8

The rate-out

[tex]R_{out}[/tex] = [tex]\frac{A}{6000}*2000[/tex]

[tex]R_{out}[/tex] = [tex]\frac{A}{3}[/tex]

We can say that:

[tex]\frac{dA}{dt}=[/tex] [tex]0.8-\frac{A}{3}[/tex]

where;

A(0)= 0.2% × 6000

A(0)= 0.002 × 6000

A(0)= 12

[tex]\frac{dA}{dt} +\frac{A}{3} =0.8[/tex]

Integration of the above linear equation =

[tex]e^{\int\limits \frac {1}{3}dt } =[/tex] [tex]e^{\frac{1}{3}t[/tex]

so we have:

[tex]e^{\frac{1}{3}t}\frac{dA}{dt}} +\frac{1}{3}e^{\frac{1}{3}t}A[/tex] [tex]= 0.8e^{\frac{1}{3}t[/tex]

[tex]\frac{d}{dt}[e^{\frac{1}{3}t}A][/tex] [tex]= 0.8e^{\frac{1}{3}t[/tex]

[tex]Ae^{\frac{1}{3}t} =2.4e\frac{1}{3}t +C[/tex]

∴ [tex]A(t) = 2.4 +Ce^{-\frac{1}{3}t[/tex]

Since A(0) = 12

Then;

[tex]12 =2.4 + Ce^{-\frac{1}{3}}(0)[/tex]

[tex]C= 12-2.4[/tex]

[tex]C =9.6[/tex]

Hence;

[tex]A(t) = 2.4 +9.6e^{-\frac{t}{3}}[/tex]

[tex]A(0) = 2.4 +9.6e^{-\frac{10}{3}}[/tex]

[tex]A(t) = 2.74[/tex]

∴ the concentration at 10 minutes is ;

=  [tex]\frac{2.74}{6000}*100[/tex]%

= 0.0456667 %

= 0.046% to three decimal places