Answer:
The 90% confidence interval is (0.383,0.497)
Step-by-step explanation:
We are given the following in the question:
Sample size, n = 200
Number of children that would attend Valentine's Day Forma, x = 88
[tex]\hat{p} = \dfrac{x}{n} = \dfrac{88}{200} = 0.44[/tex]
90% Confidence interval:
[tex]\hat{p}\pm z_{stat}\sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}}[/tex]
[tex]z_{critical}\text{ at}~\alpha_{0.10} = \pm 1.64[/tex]
Putting the values, we get:
[tex]0.44\pm 1.64(\sqrt{\dfrac{0.44(1-0.44)}{200}}) = 0.44\pm 0.057\\\\=(0.383,0.497)[/tex]
Interpretation:
The 90% confidence interval is (0.383,0.497). We are 90% confident that the proportion of children attending Valentine's Day Formal is between 38.3% and 49.7%