The air in a room with volume 180 m3 contains 0.25% carbon dioxide initially. fresher air with only 0.05% carbon dioxide flows into the room at a rate of 2 m3/min and the mixed air flows out at the same rate. find the percentage p of carbon dioxide in the room as a function of time t (in minutes).

Respuesta :

Answer:

[tex]p(t)=\frac{1}{20}(1+2e^{-t/90})[/tex]

Explanation:

Let [tex]p(t)[/tex] be % of [tex]CO_2[/tex] at time [tex]t[/tex](time in minutes).

Amount of [tex]CO_2[/tex] in room=Volume of room [tex]\times p[/tex]

Rate of change of [tex]CO_2[/tex] in room=Volume of room x [tex]\frac{dp}{dt}[/tex]

[tex]=180\times \frac{dp}{dt}[/tex]

Rate of inflow of [tex]CO_2[/tex]=[tex](\% CO_2 \ in\ Fresh\ Air \times \frac{1}{100})\times(Rate \ of Inflow\ of \ air)[/tex]

[tex]=(0.05\times \frac{1}{100})\times 2=\frac{1}{100}[/tex]

Rate of [tex]CO_2[/tex] outflow

[tex](\% CO_2 \ in\ Fresh\ Air \times \frac{1}{100})\times(Rate \ of Outflow\ of \ air)\\=(p\times\frac{1}{100})\times2=\frac{p}{50}[/tex]

Therefore rate of change of [tex]CO_2[/tex] is [tex]\frac{1}{100}-\frac{p}{50}[/tex]

% rate of change is[tex]100\times \ Rate of \ Change=\frac{1}{10}-2p[/tex]

Therefore we have:

[tex]180\frac{dp}{dt}=\frac{1}{10}-2p\\\frac{dp}{dt}=\frac{1-20p}{1800}\\\\\frac{dp}{20p-1}=-\frac{dt}{1800}[/tex]

Integrate both:

[tex]\int\limits \frac{dp}{20p-1}=\int\limits-\frac{dt}{1800}[/tex]

[tex]\frac{1}{20}In|20p-1|=-\frac{t}{1800}+In \ C[/tex]

In[tex]|20p-1|=-\frac{t}{90}+[/tex]In[tex]K[/tex]

[tex]+20In \ C=+In \ K[/tex]

Raise both sides to base [tex]e[/tex],

[tex]20p-1=e^{-\frac{t}{90}+In \ K}\\\\p=\frac{1}{20}(1+Ke^{-t/90})[/tex]

Initially, there's only 0.25% of [tex]CO_2[/tex],

Now substitute [tex]p=0.25[/tex] and [tex]t=0[/tex]

[tex]0.25=\frac{1}{20}(1+K)\\K=4[/tex]

[tex]p=\frac{1}{20}(1+2e^{-t/90})[/tex]