Respuesta :
Answer:
[tex]p(t)=\frac{1}{20}(1+2e^{-t/90})[/tex]
Explanation:
Let [tex]p(t)[/tex] be % of [tex]CO_2[/tex] at time [tex]t[/tex](time in minutes).
Amount of [tex]CO_2[/tex] in room=Volume of room [tex]\times p[/tex]
Rate of change of [tex]CO_2[/tex] in room=Volume of room x [tex]\frac{dp}{dt}[/tex]
[tex]=180\times \frac{dp}{dt}[/tex]
Rate of inflow of [tex]CO_2[/tex]=[tex](\% CO_2 \ in\ Fresh\ Air \times \frac{1}{100})\times(Rate \ of Inflow\ of \ air)[/tex]
[tex]=(0.05\times \frac{1}{100})\times 2=\frac{1}{100}[/tex]
Rate of [tex]CO_2[/tex] outflow
[tex](\% CO_2 \ in\ Fresh\ Air \times \frac{1}{100})\times(Rate \ of Outflow\ of \ air)\\=(p\times\frac{1}{100})\times2=\frac{p}{50}[/tex]
Therefore rate of change of [tex]CO_2[/tex] is [tex]\frac{1}{100}-\frac{p}{50}[/tex]
% rate of change is[tex]100\times \ Rate of \ Change=\frac{1}{10}-2p[/tex]
Therefore we have:
[tex]180\frac{dp}{dt}=\frac{1}{10}-2p\\\frac{dp}{dt}=\frac{1-20p}{1800}\\\\\frac{dp}{20p-1}=-\frac{dt}{1800}[/tex]
Integrate both:
[tex]\int\limits \frac{dp}{20p-1}=\int\limits-\frac{dt}{1800}[/tex]
[tex]\frac{1}{20}In|20p-1|=-\frac{t}{1800}+In \ C[/tex]
In[tex]|20p-1|=-\frac{t}{90}+[/tex]In[tex]K[/tex]
[tex]+20In \ C=+In \ K[/tex]
Raise both sides to base [tex]e[/tex],
[tex]20p-1=e^{-\frac{t}{90}+In \ K}\\\\p=\frac{1}{20}(1+Ke^{-t/90})[/tex]
Initially, there's only 0.25% of [tex]CO_2[/tex],
Now substitute [tex]p=0.25[/tex] and [tex]t=0[/tex]
[tex]0.25=\frac{1}{20}(1+K)\\K=4[/tex]
[tex]p=\frac{1}{20}(1+2e^{-t/90})[/tex]