Respuesta :
Answer:
Step-by-step explanation:
so from the question i have here, i will be giving a step by step analysis of the question.
(a). Here we are showing a relationship, i.e.
P(Granite ║ R₁ ∠ R₂ ∠ R₃) ˃ P (Basalt ║ R₁ ∠ R₂ ∠ R₃)
from the LHS;
P(Granite ║ R₁ ∠ R₂ ∠ R₃) = P(Granite ║ R₁ ∠ R₂ ∠ R₃) / P(R₁ ∠ R₂ ∠ R₃)
= P(Granite)P(R₁ ∠ R₂ ∠ R₃ ║ Granite) / [ P(Granite R₁ ∠ R₂ ∠ R₃) + P(Basaltic R₁ ∠ R₂ ∠ R₃) ]
= 0.25 × 0.6 / [(0.25×0.6)+(0.75×0.1)] = 0.667
from the RHS;
P (Basalt ║ R₁ ∠ R₂ ∠ R₃) = P(Basalt R₁ ∠ R₂ ∠ R₃) / P(R₁ ∠ R₂ ∠ R₃)
= P(Basalt)P(R₁ ∠ R₂ ∠ R₃ ║ Basalt) / [ P(Basalt R₁ ∠ R₂ ∠ R₃) + P(Granite R₁ ∠ R₂ ∠ R₃) ]
= 0.75 × 0.1 / [(0.25 × 0.6)+(0.75 × 0.1)] = 0.333
Therefore from this we can infer that;
P(Granite ║ R₁ ∠ R₂ ∠ R₃) ˃ P (Basalt ║ R₁ ∠ R₂ ∠ R₃)
(b). here we are asked to classify the rocks considering the measurement yield.
Measurement yielded R1 < R3 < R2
P(Granite ║ R₁ ∠ R₃ ∠ R₂) = P(Granite R₁ ∠ R₃ ∠ R₂) / P(R₁ ∠ R₃ ∠ R₂)
= P(Granite)P(R₁ ∠ R₃ ∠ R₂ ║ Granite) / [ P(Granite R₁ ∠ R₃ ∠ R₂) + P(Basaltic R₁ ∠ R₃ ∠ R₂) ]
= 0.25 × 0.25 / [(0.25 × 0.25)+(0.75 × 0.2)] = 0.294
also for RHS;
P (Basalt ║ R₁ ∠ R₃ ∠ R₂) = P(Basalt ║ ∠ R₃ ∠ R₂) / P(R₁ ∠ R₃ ∠ R₂)
= P(Basalt)P(R₁ ∠ R₃ ∠ R₂ ║ Basalt) / [ P(Basalt R₁ ∠ R₃∠ R₂) + P(Granite R₁ ∠ R₃ ∠ R₂) ]
= 0.75 × 0.2 / [(0.25 × 0.25)+(0.75 × 0.2)] = 0.706
from this we can infer that;
P(Granite ║ R₁ ∠ R₃ ∠ R₂) ∠ P (Basalt ║ R₁ ∠ R₃ ∠ R₂)
Also considering measurements yielded R₃ ∠ R₁ ∠ R₂
P(Granite ║ R₃ ∠ R₁ ∠ R₂) = P(Granite R₃ ∠ R₁ ∠ R₂) / P(R₃ ∠ R₁ ∠ R₂)
= P(Granite)P(R₃ ∠ R₁ ∠ R₂ ║ Granite) / [ P(Granite R₃ ∠ R₁ ∠ R₂) + P(Basaltic R₃ ∠ R₁ ∠ R₂) ]
= 0.25 × 0.15 / [(0.25×0.15)+(0.75×0.7)] = 0.067
from the RHS;
P (Basalt ║ R₃ ∠ R₁ ∠ R₂) = P(Basalt R₃ ∠ R₁ ∠ R₂) / P(R₃ ∠ R₁ ∠ R₂)
= P(Basalt)P(R₃ ∠ R₁ ∠ R₂ ║ Basalt) / [ P(Basalt R₃ ∠ R₁ ∠ R₂) + P(Granite R₃ ∠ R₁ ∠ R₂) ]
1 - 0.067 = 0.933
from this we can infer that;
P(Granite ║ R₃ ∠ R₁ ∠ R₂) ∠ P (Basalt ║ R₃ ∠ R₁ ∠ R₂)
cheers i hope this helps