Answer:
[tex]-\frac{1}{2} (-\frac{3}{2} x+6x+1)-3x[/tex] [tex]=-\frac{21x}{4} -\frac{1}{2}[/tex] [tex]=-\frac{1}{2}(\frac{21x}{2} +1)[/tex]
Step-by-step explanation:
Given,
[tex]-\frac{1}{2} (-\frac{3}{2} x+6x+1)-3x[/tex]
Applying distribution law
[tex]=(-\frac{1}{2}) (-\frac{3}{2} x)+(-\frac{1}{2}).6x+(-\frac{1}{2}).1-3x[/tex]
[tex]=\frac{3}{4} x-3x-\frac{1}{2}-3x[/tex]
Combine like terms
[tex]=\frac{3}{4} x-3x-3x-\frac{1}{2}[/tex]
Adding like terms
[tex]=\frac{3x-12x-12x}{4} -\frac{1}{2}[/tex]
[tex]=-\frac{21x}{4} -\frac{1}{2}[/tex]
[tex]=-\frac{1}{2}(\frac{21x}{2} +1)[/tex]