Answer:
84.82N/C.
Explanation:
The x-components of the electric field cancel; therefore, we only care about the y-components.
The y-component of the differential electric field at the center is
[tex]$dE = \frac{kdQ }{R^2} sin(\theta )$[/tex].
Now, let us call [tex]\lambda[/tex] the charge per unit length, then we know that
[tex]dQ = \lambda Rd\theta[/tex];
therefore,
[tex]$dE = \frac{k \lambda R d\theta }{R^2} sin(\theta )$[/tex]
[tex]$dE = \frac{k \lambda d\theta }{R} sin(\theta )$[/tex]
Integrating
[tex]$E = \frac{k \lambda }{R}\int_0^\pi sin(\theta )d\theta$[/tex]
[tex]$E = \frac{k \lambda }{R}*[-cos(\pi )+cos(0) ]$[/tex]
[tex]$E = \frac{2k \lambda }{R}.$[/tex]
Now, we know that
[tex]\lambda = 3.0*10^{-9}C/m,[/tex]
[tex]k = 9*10^9kg\cdot m^3\cdot s^{-4}\cdot A^{-2},[/tex]
and the radius of the semicircle is
[tex]\pi R = 2.0m,\\\\R = \dfrac{2.0m}{\pi };[/tex]
therefore,
[tex]$E = \frac{2(9*10^9) (3.0*10^{-9}) }{\dfrac{2.0}{\pi } }.$[/tex]
[tex]$\boxed{E = 84.82N/C.}$[/tex]