Respuesta :
Answer : The fraction of the molecules in the neutral (imidazole) form are, 0.799
Explanation : Given,
pH = 6.6
[tex]p_{K_a}=6.0[/tex]
Using Henderson Hesselbach equation :
[tex]pH=pK_a+\log \frac{[Salt]}{[Acid]}[/tex]
[tex]pH=pK_a+\log \frac{[\text{Imidazole}]}{[\text{Imidazolium ion}]}[/tex]
Now put all the given values in this expression, we get:
[tex]6.6=6.0+\log \frac{[\text{Imidazole}]}{[\text{Imidazolium ion}]}[/tex]
[tex]\frac{[\text{Imidazole}]}{[\text{Imidazolium ion}]}=10^{6.6-6.0}[/tex]
[tex]\frac{[\text{Imidazole}]}{[\text{Imidazolium ion}]}=10^{0.6}[/tex]
[tex]\frac{[\text{Imidazole}]}{[\text{Imidazolium ion}]}=3.98[/tex]
[tex][\text{Imidazole}]=3.98[\text{Imidazolium ion}][/tex] ...........(1)
Now we have to determine the fraction of the molecules are in the neutral (imidazole) form.
Fraction of neutral imidazole = [tex]\frac{[\text{Imidazole}]}{[\text{Imidazole}]+[\text{Imidazolium ion}]}[/tex]
Now put the expression 1 in this expression, we get:
Fraction of neutral imidazole = [tex]\frac{3.98[\text{Imidazolium ion}]}{3.98[\text{Imidazolium ion}]+[\text{Imidazolium ion}]}[/tex]
Fraction of neutral imidazole = [tex]\frac{3.98[\text{Imidazolium ion}]}{4.98[\text{Imidazolium ion}]}[/tex]
Fraction of neutral imidazole = [tex]\frac{3.98}{4.98}[/tex]
Fraction of neutral imidazole = 0.799
Thus, the fraction of the molecules in the neutral (imidazole) form are, 0.799