Answer:
The probability that R2 is bigger than R1 is P=0.9633.
Step-by-step explanation:
We need to compute the probability that R2 is bigger than R1:
[tex]P(R_2>R_1)[/tex]
To do this, we define a new variable Das the difference between the two resistances:
[tex]D=R_2-R_1[/tex]
Then,
[tex]P(R_2>R_1)=P(R_2-R_1>0)=P(D>0)[/tex]
As R1 and R2 are normal random variables, the properties of D are:
[tex]\mu_D=\mu_{R2}-\mu_{R1}=120-100=20\\\\\sigma_D=\sqrt{\sigma_{R2}^2+\sigma_{R1}^2}=\sqrt{10^2+5^2}=\sqrt{100+25}=\sqrt{125}=11.18[/tex]
Then, we can calculate the z-value for D=0
[tex]z=\frac{x-\mu}{\sigma} =\frac{0-20}{11.18}=\frac{-20}{11.18}= -1.79[/tex]
[tex]P(D>0)=P(z>-1.79)=0.9633[/tex]