Answer:
Step-by-step explanation:
Given that the owner of a motel has 2900 m of fencing and wants to enclose a rectangular plot of land that borders a straight highway.
Fencing is used for 2times length and 1 width if highway side is taken as width
So we have 2l+w = 2900
Or w = 2900-2l
Area of the rectangular region = lw
[tex]A(l) = l(2900-2l) = 2900l-2l^2\\[/tex]
Use derivative test to find the maximum
[tex]A'(l) = 2900-4l\\A"(l) = -4<0[/tex]
So maximum when I derivative =0
i.e when [tex]l =\frac{2900}{4} =725[/tex]
Largest area = A(725)
= [tex]725(2900-2*725)\\= 1051250[/tex]
1051250 sqm is area maximum