Let f left-parenthesis x right-parenthesis equals 2 x squared plus x minus 3 and g left-parenthesis x right-parenthesis equals x minus 1. Perform the indicated operation, then find the domain. left-parenthesis f minus g right-parenthesis left-parenthesis x right-parenthesis A. x squared minus 4; domain: positive real numbers B. 2 x squared minus 4; domain: all real numbers C. x squared minus 4; domain: all real numbers D. 2 x squared minus 2; domain: all real numbers

Respuesta :

Answer:

The option D) is correct

"2 x squared minus 2; domain: all real numbers "

That is [tex](f-g)(x)=2x^2-2[/tex] and domain is all real numbers

Step-by-step explanation:

Given that the functions f and g are defined by

[tex]f(x)=2x^2+x-3[/tex] and [tex]g(x)=x-1[/tex]

To perform the indicated operation (f-g)(x) and then find the domain :

To find (f-g)(x)

(f-g)(x)=f(x)-g(x)

Substitute the values of the functions we get

[tex](f-g)(x)=f(x)-g(x)=2x^2+x-3-(x-1)[/tex]

[tex]=2x^2+x-3-1(x)-1(-1)[/tex]

[tex]=2x^2+x-3-x+1[/tex]

[tex]=2x^2-2[/tex] ( by adding the like terms )

Therefore [tex](f-g)(x)=2x^2-2[/tex] and domain is all real numbers

The option D) is correct

"2 x squared minus 2; domain: all real numbers "

The value of (f-g)(x) is [tex]2x^2-2[/tex]. Thus, the correct option is (D)

Two different functions are given that are as follow:

[tex]f(x)=2x^2+x-3[/tex]

[tex]g(x)=x-1[/tex]

We need to determine the value of the composite function that is (f-g)(x).

Now, by using the property of the composite function (f-g)(x) can also be written as:

[tex](f-g)(x)=f(x)-g(x)[/tex]

Substitute the values of both the functions and solve it further for (f-g)(x).

[tex]\begin{aligned}(f-g)(x)&=(2x^2+x-3)-(x-1)\\&=2x^2+x-3-x+1\\&=2x^2-2\\&=2(x^2-1)\end{aligned}[/tex]

Thus, the value of (f-g)(x) is [tex]2x^2-2[/tex]. Thus, the correct option is (D)

To know more about it, please refer to the link:

https://brainly.com/question/5614233