Respuesta :
Option C: [tex](7 g-6 h)(5 g+4 h)[/tex] is the correct answer.
Explanation:
The given expression is [tex]35 g^{2}-2 g h-24 h^{2}[/tex]
We need to determine the factor of the expression.
Now, let us break the given expression into two groups.
Hence, we get,
[tex]35 g^{2}+28 g h-30 g h-24 h^{2}[/tex]
Simplifying, we get,
[tex]\left(35 g^{2}+28 g h\right)+\left(-30 g h-24 h^{2}\right)[/tex]
Let us factor out 7g from the term [tex]\left(35 g^{2}+28 g h\right)[/tex]
Hence, we have,
[tex]7 g(5 g+4 h)+\left(-30 g h-24 h^{2}\right)[/tex]
Similarly, let us factor out -6h from the term [tex]\left(-30 g h-24 h^{2}\right)[/tex]
Thus, we have,
[tex]7 g(5 g+4 h)-6 h(5 g+4 h)[/tex]
Now, we shall factor out the term [tex]5g+4h[/tex] , we get,
[tex](7 g-6 h)(5 g+4 h)[/tex]
Thus, the factorization of the given expression is [tex](7 g-6 h)(5 g+4 h)[/tex]
Therefore, Option C is the correct answer.