Factor the expression. 35g^2 – 2gh – 24h^2


(7g + 6)(5g + 4h2)

(7g + 6h)(5g – 4h)

(7g – 6h)(5g + 4h)

(7g – 6)(5g + 4)

Respuesta :

Option C: [tex](7 g-6 h)(5 g+4 h)[/tex] is the correct answer.

Explanation:

The given expression is [tex]35 g^{2}-2 g h-24 h^{2}[/tex]

We need to determine the factor of the expression.

Now, let us break the given expression into two groups.

Hence, we get,

[tex]35 g^{2}+28 g h-30 g h-24 h^{2}[/tex]

Simplifying, we get,

[tex]\left(35 g^{2}+28 g h\right)+\left(-30 g h-24 h^{2}\right)[/tex]

Let us factor out 7g from the term [tex]\left(35 g^{2}+28 g h\right)[/tex]

Hence, we have,

[tex]7 g(5 g+4 h)+\left(-30 g h-24 h^{2}\right)[/tex]

Similarly, let us factor out -6h from the term [tex]\left(-30 g h-24 h^{2}\right)[/tex]

Thus, we have,

[tex]7 g(5 g+4 h)-6 h(5 g+4 h)[/tex]

Now, we shall factor out the term [tex]5g+4h[/tex] , we get,

[tex](7 g-6 h)(5 g+4 h)[/tex]

Thus, the factorization of the given expression is [tex](7 g-6 h)(5 g+4 h)[/tex]

Therefore, Option C is the correct answer.

Answer:

Option C is the correct answer.

Step-by-step explanation: