Step-by-step explanation:
Given points are: [tex] (5, - 2) =(x_1,\:y_1) \:\&\: (-3, 4)=(x_2,\:y_2)[/tex]
Equation of line in two point form is given as:
[tex] \frac{y -y_1 }{y_1 - y_2} = \frac{x -x_1 }{x_1 - x_2} \\ \\ \therefore \: \frac{y -( -2 ) }{ - 2 - 4} = \frac{x -5 }{5 - ( - 3)} \\ \\\therefore \: \frac{y + 2 }{ - 6} = \frac{x -5 }{5 + 3} \\ \\\therefore \: \frac{y + 2 }{ - 6} = \frac{x -5 }{8} \\ \\\therefore \: \frac{y + 2 }{ - 3} = \frac{x -5 }{4} \\ \\\therefore \: 4(y + 2 ) = - 3(x - 5) \\ \\ \therefore \: 4y + 8 = - 3x + 15 \\ \\ \therefore \: 3x + 4y + 8 - 15 = 0 \\ \\ \huge \: \orange{ \boxed{\therefore \: 3x + 4y - 7 = 0}} \\ \: \: is \: the \: required \: equation \: of \: line[/tex]