contestada

In △ABC , line AB is extended up to point E and line BC is extended up to D . The measure of some of the angles is given as; ∠BAC=70° and ∠EBC=120° .

In ABC line AB is extended up to point E and line BC is extended up to D The measure of some of the angles is given as BAC70 and EBC120 class=

Respuesta :

Answer:

[tex]\angle ACD = 130 ^\circ[/tex].

Step-by-step explanation:

[tex]\angle ABC[/tex] and [tex]\angle EBC[/tex] are supplementary angles. Their sum should be [tex]180^\circ[/tex].  [tex]\angle EBC = 120^\circ[/tex] [tex]\implies \angle ABC = 180^\circ - \angle EBC = 180^\circ - 120^\circ = 60^\circ[/tex].

The sum of the three angles in triangle [tex]\triangle ABC[/tex]: [tex](\angle ABC + \angle BAC + \angle ACB)[/tex] should be equal to [tex]180^\circ[/tex].

[tex]\angle ABC = 60^\circ[/tex] and [tex]\angle BAC = 70^\circ[/tex] [tex]\implies \angle ACB = 180^\circ - \angle ABC - \angle ACB = 180^\circ - 70^\circ - 60^\circ = 50^\circ[/tex].

[tex]\angle ACB[/tex] and [tex]\angle ACD[/tex] form another pair of supplementary angles. Their sum should also be [tex]180^\circ[/tex]. [tex]\angle ACB = 50^\circ[/tex] [tex]\implies \angle ACD = 180^\circ - \angle ACB = 180^\circ - 50^\circ = 130^\circ[/tex].

Answer:

sum should also be . .

Step-by-step explanation: