Suppose you want to have $700,000 for retirement in 35 years. Your account earns 9% interest. How much would you need to deposit in the account each month?

Respuesta :

Answer: you should deposit $236.2 each month.

Step-by-step explanation:

We would apply the formula for determining future value involving deposits at constant intervals. It is expressed as

S = R[{(1 + r)^n - 1)}/r][1 + r]

Where

S represents the future value of the investment.

R represents the regular payments made(could be weekly, monthly)

r = represents interest rate/number of payment intervals.

n represents the total number of payments made.

From the information given,

there are 12months in a year, therefore

r = 0.09/12 = 0.0075

n = 12 × 35 = 420

S = $700000

Therefore,

700000 = R[{(1 + 0.0075)^420 - 1)}/0.0075][1 + 0.0075]

700000 = R[{(1.0075)^420 - 1)}/0.0075][1.0075]

700000 = R[{(23.06 - 1)}/0.0075][1.0075]

700000 = R[{22.06}/0.0075][1.0075]

700000 = R[2941.3][1.0075]

700000 = 2963.36R

R = 700000/2963.36

R = 236.2