Respuesta :

Option A:

[tex]\left(x^{4}\right)\left(3 x^{3}-2\right)\left(4 x^{2}+5 x\right)=12 x^{9} +15 x^{8} - 8 x^{6}-10 x^{5}[/tex]

Solution:

Given expression [tex]\left(x^{4}\right)\left(3 x^{3}-2\right)\left(4 x^{2}+5 x\right)[/tex].

To find the product of the above expression:

[tex]\left(x^{4}\right)\left(3 x^{3}-2\right)\left(4 x^{2}+5 x\right)[/tex]

First multiply first two factors with each term.

           [tex]=(x^{4} \times 3 x^{3}- x^{4} \times 2 ) \left(4 x^{2}+5 x\right)[/tex]

Using exponent rule: [tex]a^m \cdot a^n=a^{m+n}[/tex]

            [tex]=(3 x^{7}- 2x^{4} ) \left(4 x^{2}+5 x\right)[/tex]

Now multiply these two factors with each term.

            [tex]=3 x^{7} (4 x^{2}+5 x)- 2x^{4} \left(4 x^{2}+5 x\right)[/tex]

            [tex]=(4 x^{2} \times 3 x^{7} +5 x \times 3 x^{7} )- \left(4 x^{2} \times 2x^{4}+5 x \times 2x^{4}\right)[/tex]

Using exponent rule: [tex]a^m \cdot a^n=a^{m+n}[/tex]

            [tex]=(12 x^{9} +15 x^{8} )- (8 x^{6}+10 x^{5})[/tex]

           [tex]=12 x^{9} +15 x^{8} - 8 x^{6}-10 x^{5}[/tex]

[tex]\left(x^{4}\right)\left(3 x^{3}-2\right)\left(4 x^{2}+5 x\right)=12 x^{9} +15 x^{8} - 8 x^{6}-10 x^{5}[/tex]

Hence option A is the correct answer.