Respuesta :

Option C:

[tex]\left(7 x^{2} y^{3}\right)\left(3 x^{5} y^{8}\right)=21 x^{7} y^{11}[/tex]

Solution:

Given expression is [tex]\left(7 x^{2} y^{3}\right)\left(3 x^{5} y^{8}\right)[/tex].

To find the product of the above expression.

[tex]\left(7 x^{2} y^{3}\right)\left(3 x^{5} y^{8}\right)[/tex]

First multiply the numerical coefficients.

[tex]\left(7 x^{2} y^{3}\right)\left(3 x^{5} y^{8}\right)=21 x^{2} y^{3} x^{5} y^{8}[/tex]

Arrange the terms with same base.

                         [tex]=21 x^{2} x^{5} y^{3} y^{8}[/tex]      

Using exponent rule: [tex]a^m \cdot a^n = a^{m+n}[/tex]

                        [tex]=21 x^{2+5} y^{3+8}[/tex]

                        [tex]=21 x^{7} y^{11}[/tex]

[tex]\left(7 x^{2} y^{3}\right)\left(3 x^{5} y^{8}\right)=21 x^{7} y^{11}[/tex]

Hence option C is the correct answer.