Answer: the first option is correct.
Step-by-step explanation:
In a geometric sequence, each consecutive term differ by a common ratio, r.
The formula for determining the nth term of a geometric progression is expressed as
an = a1r^(n - 1)
Where
a1 represents the first term of the sequence.
r represents the common ratio.
n represents the number of terms.
From the information given,
a = - 5
r = - 2
n = 3
Therefore, the 3rd term, T3 is
T3 = - 5 × - 2^(3 - 1)
T3 = - 5 × - 2^2
T3 = - 5 × 4
T3 = - 20