Respuesta :
The given question is incomplete. The complete question is as follows.
An oxygen molecule is adsorbed onto a small patch of the surface of a catalyst. It's known that the molecule is adsorbed on 1 of 36 possible sites for adsorption. Calculate the entropy of this system.
Explanation:
It is known that Boltzmann formula of entropy is as follows.
s = k ln W
where, k = Boltzmann constant
W = number of energetically equivalent possible microstates or configuration of the system
In the given case, W = 36. Now, we will put the given values into the above formula as follows.
s = k ln W
= [tex]1.38 \times 10^{-23} ln (36)[/tex]
= [tex]4.945 \times 10^{-23} J/K[/tex]
Thus, we can conclude that the entropy of this system is [tex]4.945 \times 10^{-23} J/K[/tex].
The entropy of the given system is [tex]4.954 \times 10^{-23 } \rm\; J/K[/tex] in which an oxygen molecule is absorbed in one of the 36 possible states.
From the Boltzmann formula of entropy,
[tex]s = k \times ln W[/tex]
Where,
[tex]k[/tex]= Boltzmann constant = [tex]1.38\times 10^{-23} \rm\; J/K[/tex]
[tex]W[/tex] = Number of energetically equivalent possible microstates of the system = 36
Put the values in the formula
[tex]s =1.38\times 10^{-23} \times ln (36)\\\\s = 4.954 \times 10^{-23 } \rm\; J/K[/tex]
Therefore, the entropy of the given system is [tex]4.954 \times 10^{-23 } \rm\; J/K[/tex]
To know more about entropy,
https://brainly.com/question/15025401