An oxygen molecule is adsorbed onto a small patch of the surface of a catalyst. It's known that the molecule is adsorbed on of possible sites for adsorption (see sketch at right). Calculate the entropy of this system. Round your answer to significant digits, and be sure it has the correct unit symbol.

Respuesta :

The given question is incomplete. The complete question is as follows.

An oxygen molecule is adsorbed onto a small patch of the surface of a catalyst. It's known that the molecule is adsorbed on 1 of 36 possible sites for adsorption. Calculate the entropy of this system.

Explanation:

It is known that Boltzmann formula of entropy is as follows.

             s = k ln W

where,   k = Boltzmann constant

              W = number of energetically equivalent possible microstates or configuration of the system

In the given case, W = 36. Now, we will put the given values into the above formula as follows.

                  s = k ln W

                    = [tex]1.38 \times 10^{-23} ln (36)[/tex]        

                    = [tex]4.945 \times 10^{-23} J/K[/tex]

Thus, we can conclude that the entropy of this system is [tex]4.945 \times 10^{-23} J/K[/tex].

The entropy of the given system is [tex]4.954 \times 10^{-23 } \rm\; J/K[/tex]  in which an oxygen molecule is absorbed in one of the 36 possible states.

 

From the Boltzmann formula of entropy,

[tex]s = k \times ln W[/tex]

Where,  

[tex]k[/tex]= Boltzmann constant = [tex]1.38\times 10^{-23} \rm\; J/K[/tex]

[tex]W[/tex] = Number of energetically equivalent possible microstates of the system = 36

Put the values in the formula  

[tex]s =1.38\times 10^{-23} \times ln (36)\\\\s = 4.954 \times 10^{-23 } \rm\; J/K[/tex]

Therefore, the entropy of the given system is [tex]4.954 \times 10^{-23 } \rm\; J/K[/tex]

To know more about entropy,

https://brainly.com/question/15025401