Respuesta :
Answer:
a) [tex] \bar X = \frac{\sum_{i=1}^n X_i}{n}[/tex]
And replacing we got:
[tex] \bar X = 27.2[/tex]
b) For this case we have n =48 observations and we can calculate the median with the average between the 24th and 25th values on the dataset ordered.
20.4 20.4 20.5 21.7 22.3 23.3 23.6 23.7 23.7 23.7 23.9 23.9 24.1 24.3 24.7 24.9 25.1 25.1 25.1 25.2 25.3 25.6 26.1 26.1 26.4 26.5 26.7 27.1 27.1 27.4 27.6 28.4 28.6 28.6 28.7 28.8 28.8 29.6 31.0 32.0 32.0 32.4 32.5 32.9 33.1 34.5 38.4 44.1
For this case the median would be:
[tex] Median = \frac{26.1+26.4}{2}=26.25 \approx 26.3[/tex]
c) [tex] Mode= 23.2, 25.1[/tex]
And both with a frequency of 3 so then we have a bimodal distribution for this case
Step-by-step explanation:
For this case we have the following dataset:
23.6, 26.5, 28.6, 28.6, 23.7, 25.3, 24.9, 28.7, 26.7, 32.4, 20.4, 23.9, 32.0, 32.5, 23.7, 26.1, 21.7, 26.1, 38.4, 24.1, 20.5, 25.2, 31, 26.4, 27.1 ,25.1, 25.1, 23.7, 23.9, 32.9, 28.8, 25.6, 28.8, 28.4, 32, 27.6, 29.6, 44.1, 27.1, 24.7, 22.3, 24.3, 23.3, 27.4, 20.4, 25.1, 34.5, 33.1
Part a
We can calculate the mean with the following formula:
[tex] \bar X = \frac{\sum_{i=1}^n X_i}{n}[/tex]
And replacing we got:
[tex] \bar X = 27.2[/tex]
Part b
For this case we have n =48 observations and we can calculate the median with the average between the 24th and 25th values on the dataset ordered.
20.4 20.4 20.5 21.7 22.3 23.3 23.6 23.7 23.7 23.7 23.9 23.9 24.1 24.3 24.7 24.9 25.1 25.1 25.1 25.2 25.3 25.6 26.1 26.1 26.4 26.5 26.7 27.1 27.1 27.4 27.6 28.4 28.6 28.6 28.7 28.8 28.8 29.6 31.0 32.0 32.0 32.4 32.5 32.9 33.1 34.5 38.4 44.1
For this case the median would be:
[tex] Median = \frac{26.1+26.4}{2}=26.25 \approx 26.3[/tex]
Part c
For this case the mode would be:
[tex] Mode= 23.2, 25.1[/tex]
And both with a frequency of 3 so then we have a bimodal distribution for this case