Answer:
The calculated 99% confidence interval is wider than the 95% confidence interval.
Step-by-step explanation:
We are given the following in the question:
95% confidence interval for the population proportion
(0.65, 0.69)
Let [tex]\hat{p}[/tex] be the sample proportion
Confidence interval:
[tex]p \pm z_{stat}(\text{Standard error})[/tex]
[tex]z_{critical}\text{ at}~\alpha_{0.05} = 1.96[/tex]
Let x be the standard error, then, we can write
[tex]\hat{p} - 1.96x = 0.65\\\hat{p}+1.96x = 0.69[/tex]
Solving the two equations, we get,
[tex]2\hat{p} = 0.65 + 0.69\\\\\hat{p} = \dfrac{1.34}{2} = 0.67\\\\x = \dfrac{0.69 - 0.67}{1.96} \approx 0.01[/tex]
99% Confidence interval:
[tex]p \pm z_{stat}(\text{Standard error})[/tex]
[tex]z_{critical}\text{ at}~\alpha_{0.01} = 2.58[/tex]
Putting values, we get,
[tex]0.67 \pm 2.58(0.01)\\=0.67 \pm 0.0258\\=(0.6442,0.6958)[/tex]
Thus, the calculated 99% confidence interval is wider than the 95% confidence interval .