Respuesta :

Answer:

Step-by-step explanation:

to prove that 1/ (sec x - tan x) = sec x + tan x

from the right hand side sec x + tan x =

from trigonometry basics  

sec x = 1/ cos x

tan x = sin x/ cos x

so, sec x + tan x =  1/ cosx + sinx/ cosx

finding the lcm

= (1+ sinx)/cos x

= (1 + sinx) cosx/ cos²x

= (1 + sinx) cosx/( 1- sinx) ( 1 + sinx)

( 1 + sinx) cancels the (1- sinx)  at the denominator

so we have;

= cos x/ 1 -sinx

1/1/cosx - sinx/cosx

remember that 1/ cos x = sec x

and also sinx/cos x = tan x

so therefore we have 1/ sec x - tanx

since LHS = RHS  then we can say that 1 / sec x - tan x = sec x + tan x.