Respuesta :
The question is incomplete, here is the complete question:
A chemist fills a reaction vessel with 9.47 atm nitrogen monoxide gas, 2.61 atm chlorine gas, and 8.64 atm nitrosyl chloride gas at a temperature of 25°C. Under these conditions, calculate the reaction free energy for the following chemical reaction:
[tex]2NO(g)+Cl_2(g)\rightleftharpoons 2NOCl(g)[/tex]
Use the thermodynamic information in the ALEKS Data tab. Round your answer to the nearest kilojoule.
Answer: The Gibbs free energy change of the reaction is -44.0 kJ
Explanation:
The equation used to calculate standard Gibbs free change of a reaction is:
[tex]\Delta G^o_{rxn}=\sum [n\times \Delta G^o_f_{(product)}]-\sum [n\times \Delta G^o_f_{(reactant)}][/tex]
For the given chemical reaction:
[tex]2NO(g)+Cl_2(g)\rightarrow 2NOCl(g)[/tex]
- The equation for the standard Gibbs free energy change of the above reaction is:
[tex]\Delta G^o_{rxn}=[(2\times \Delta G^o_f_{(NOCl(g))})]-[(2\times \Delta G^o_f_{(NO(g))})+(2\times \Delta G^o_f_{(Cl_2)})][/tex]
We are given:
[tex]\Delta G^o_f_{(NOCl(g))}=66.08kJ/mol\\\Delta G^o_f_{(Cl_2(g))}=0kJ/mol\\\Delta G^o_f_{(NO(g))}=86.55kJ/mol[/tex]
Putting values in above equation, we get:
[tex]\Delta G^o_{rxn}=[(2\times (66.08))]-[(2\times (86.55))+(1\times (0))]\\\\\Delta G^o_{rxn}=-40.94kJ[/tex]
- The expression of [tex]Q_p[/tex] for above equation follows:
[tex]Q_p=\frac{(p_{NOCl})^2}{(p_{NO})^2\times p_{Cl_2}}[/tex]
We are given:
[tex]p_{NOCl}=8.64atm\\p_{NO}=9.47atm\\p_{Cl_2}=2.61atm[/tex]
Putting values in above expression, we get:
[tex]Q_p=\frac{(8.64)^2}{(9.47)^2\times 2.61}=0.319[/tex]
To calculate the Gibbs free energy change of the reaction, we use the equation:
[tex]\Delta G=\Delta G^o+RT\ln Q_p[/tex]
where,
[tex]\Delta G^o[/tex] = standard Gibbs free energy change = -40.94 kJ
R = Gas constant = 8.314 J/mol.K = 0.008314 kJ/mol.K
T = temperature = [tex]25^oC=[25+273]K=298K[/tex]
[tex]Q_p[/tex] = reaction coefficient = 0.319
Putting values in above equation, we get:
[tex]\Delta G=-40.94+(0.008314J/mol.K\times 298K\times \ln (0.319)\\\\\Delta G=-43.77kJ[/tex]
Hence, the Gibbs free energy change of the reaction is -44.0 kJ