Respuesta :

The distance between the 2 given points is 35 units

Step-by-step explanation:

Step 1 :

Let A be the point  (14, 27) and B be the point  (14, −8).

Distance between any 2 points is obtained by the taking  root of the sum of squares of the difference between the x co ordinates and the y co ordinates and is  given by the formula

[tex]\sqrt({x_{2} - x_{1}) ^{2} + ({y_{2} - y_{1}) ^{2} }[/tex]

Where [tex](x_{1} , y_{1}) and (x_{2} , y_{2})[/tex] are the 2 points

Step 2 :

Using the above formula , we get the distance between the 2 given points as

[tex]\sqrt({14-14)^{2} + {((-8)-27)^{2} }[/tex]  = [tex]\sqrt{(-35)^{2} }[/tex]   = 35 units

Step 3 :

Answer:

The required distance of the 2 given points is 35 units