The range of the function is [tex]\{-19,-4,16\}[/tex]
Explanation:
The function is [tex]f(n)=5n-4[/tex]
The domain of the function is [tex]\{-3,0,4\}[/tex]
We need to find the range of the function.
The range can be determined by substituting the values of domain in the function.
Thus, the range of the function when the domain is -3 is given by
[tex]f(-3)=5(-3)-4[/tex]
[tex]=-15-4[/tex]
[tex]=-19[/tex]
Thus, the range is -19 when [tex]n=-3[/tex]
The range of the function when the domain is 0 is given by
[tex]f(0)=5(0)-4[/tex]
[tex]=0-4[/tex]
[tex]=-4[/tex]
Thus, the range is -4 when [tex]n=0[/tex]
The range of the function when the domain is 4 is given by
[tex]f(4)=5(4)-4[/tex]
[tex]=20-4[/tex]
[tex]=16[/tex]
Thus, the range is 16 when [tex]n=4[/tex]
Thus, the range of the function is [tex]\{-19,-4,16\}[/tex] when their corresponding domain is [tex]\{-3,0,4\}[/tex]
Arranging the range in order from least to greatest is given by
[tex]\{-19,-4,16\}[/tex]
Hence, the range of the function is [tex]\{-19,-4,16\}[/tex]