Respuesta :

Answer:

(C)-262143

Step-by-step explanation:

For a geometric series, the nth term

[tex]A_n=ar^{n-1}[/tex] where a= first term, r=common ratio.

If [tex]A_1=a=-3[/tex] , r=4 and [tex]A_n=-196608[/tex]

then from [tex]A_n=ar^{n-1}[/tex]

-196608=-3 X [tex]4^{n-1}[/tex]

[tex]4^{n-1}=\frac{-196608}{-3} =65536\\4^{n-1}=4^8[/tex]

Since the bases are the same, the powers are equal

n-1=8

n=8+1=9

Therefore the Sum of the geometric series

[tex]S_n=\frac{a(r^n-1)}{r-1}[/tex] (This form is used because r>1)

[tex]S_n=\dfrac{-3(4^{9}-1)}{4-1}[/tex]

[tex]S_n=\dfrac{-3(262144-1)}{3}=\dfrac{-3(262143)}{3}=-262143[/tex]