Respuesta :
Explanation:
The given data is as follows.
v = [tex]6.00 \times 10^{5} m/s[/tex]
B = 0.0525 T, q = [tex]1.60 \times 10^{-19}[/tex]
m = [tex]3.34 \times 10^{-27} kg[/tex]
It is known that relation between mass and magnetic field is as follows.
[tex]\frac{mv^{2}}{r} = Bvq[/tex]
or, r = [tex]\frac{mv^{2}}{Bvq}[/tex]
So, putting the given values into the above formula and we will calculate the radius as follows.
r = [tex]\frac{mv^{2}}{Bvq}[/tex]
= [tex]\frac{3.34 \times 10^{-27} kg \times 6.00 \times 10^{5} m/s}{0.0525 T \times 1.60 \times 10^{-19}}[/tex]
= [tex]\frac{20.04 \times 10^{-22}}{0.084 \times 10^{-19}}[/tex]
= 0.238 m
Thus, we can conclude that radius of the circular path is 0.238 m.
Answer:
The radius is [tex]238.57\times10^{-3}\ m[/tex]
Explanation:
Given that,
Speed [tex]v=6.00\times10^{5}\ m/s[/tex]
Magnetic field = 0.0525 T
We need to calculate the radius
Using relation of centripetal force and magnetic force
[tex]F=qvB[/tex]
[tex]\dfrac{mv^2}{r}=qvB[/tex]
[tex]r=\dfrac{mv^2}{qvB}[/tex]
[tex]r=\dfrac{mv}{qB}[/tex]
Put the value into the formula
[tex]r=\dfrac{3.34\times10^{-27}\times6.00\times10^{5}}{1.60\times10^{-19}\times0.0525}[/tex]
[tex]r=0.238\ m[/tex]
[tex]r=238.57\times10^{-3}\ m[/tex]
Hence, The radius is [tex]238.57\times10^{-3}\ m[/tex]