A 6.0-cm-diameter, 11-cm-long cylinder contains 100 mg of oxygen (O2) at a pressure less than 1 atm. The cap on one end of the cylinder is held in place only by the pressure of the air. One day when the atmospheric pressure is 100 kPa, it takes a 173 N force to pull the cap off.

Respuesta :

Explanation:

The given data  is as follows.

Mass of oxygen present = 100 mg = [tex]100 \times 10^{-3}[/tex] g

So, moles of oxygen present are calculated as follows.

      n = [tex]\frac{100 \times 10^{-3}}{32}[/tex]

         = [tex]3.125 \times 10^{-3}[/tex] moles

Diameter of cylinder = 6 cm = [tex]6 \times 10^{-2}[/tex] m

                              = 0.06 m

Now, we will calculate the cross sectional area (A) as follows.

    A = [tex]\pi \times \frac{(0.06)^{2}}{4}[/tex]

        = [tex]2.82 \times 10^{-3} m^{2}[/tex]

Length of tube = 11 cm = 0.11 m

Hence, volume (V) = [tex]2.82 \times 10^{-3} \times 0.11[/tex]

                              = [tex]3.11 \times 10^{-4} m^{3}[/tex]

Now, we assume that the inside pressure is P .

And,   [tex]P_{atm}[/tex] = 100 kPa = 100000 Pa,

Pressure difference = 100000 - P

Hence, force required to open is as follows.

      Force = Pressure difference × A

                = [tex](100000 - P) \times 2.82 \times 10^{-3}[/tex]

We are given that force is 173 N.

Thus,

         [tex](100000 - P) \times 2.82 \times 10^{-3}[/tex] = 173

Solving we get,

          P = [tex]3.8650 \times 10^{4} Pa[/tex]

            = 38.65 kPa

According to the ideal gas equation, PV = nRT

So, we will put the values into the above formula as follows.

                PV = nRT

    [tex]38.65 \times 3.11 \times 10^{-4} = 3.125 \times 10^{-3} \times 8.314 \times T[/tex]

                    T = 462.66 K

Thus, we can conclude that temperature of the gas is 462.66 K.