Answer:
The total possible number of complete councils that could be selected is 24,174,150.
Step-by-step explanation:
The order of the men and the women is not important. So we use the combinations formula to solve this question.
Combinations formula:
[tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
What is the total possible number of complete councils that could be selected
3 women from a set of 15
5 men from a set of 25
[tex]T = C_{15,3}*C_{25,5} = \frac{15!}{3!12!}*\frac{25!}{5!20!} = 455*53130 = 24174150[/tex]
The total possible number of complete councils that could be selected is 24,174,150.