Answer with Explanation:
We are given that
Diameter of coil=d=0.115mm
Radius, r=[tex]\frac{d}{2}=\frac{0.115}{2}=0.0575mm=0.0575\times 10^{-3} m[/tex]
Using [tex]1mm=10^{-3} m[/tex]
Electric field=E=0.235V/m
T=55 degree C
[tex]T_0=20^{\circ} C[/tex]
[tex]\rho_0=2.82\times 10^{-8}\Omega m[/tex]
[tex]\alpha=3.9\times 10^{-3}/C[/tex]
(a).We know that
[tex]\rho=\rho_0(1+\alpha(T-T_0))[/tex]
Substitute the values
[tex]\rho=2.82\times 10^{-8}(1+3.9\times 10^{-3}(55-20))[/tex]
[tex]\rho=3.2\times 10^{-8}\Omega m[/tex]
(b).Current density,[tex]J=\frac{E}{\rho}[/tex]
Using the formula
[tex]J=\frac{0.235}{3.2\times 10^{-8}}=7.3\times 10^6A/m^2[/tex]
c.Total current,I=JA
Where [tex]A=\pi r^2[/tex]
[tex]\pi=3.14[/tex]
Using the formula
[tex]I=7.3\times 10^6\times 3.14\times (0.0575\times 10^{-3})^2[/tex]
I=0.076A
d.Length of wire=l=2m
[tex]V=El[/tex]
Substitute the values
[tex]V=0.235\times 2=0.47 V[/tex]