An aluminum wire with a diameter of 0.115 mm has a uniform electric field of 0.235 V/m imposed along its entire length. The temperature of the wire is 55.0°C. Assume one free electron per atom. Given that at 20 degrees, rhoo = 2.82x10-8 Ωm and α = 3.9x10-3 /C. Determine:
a) the resistivity of the wire.
b) the current density in the wire.
c) the total current in the wire.
d) the potential different that must exist between the ends of a 2m length of wire if the given electric field is to be produced.

Respuesta :

Answer with Explanation:

We are given that

Diameter of coil=d=0.115mm

Radius, r=[tex]\frac{d}{2}=\frac{0.115}{2}=0.0575mm=0.0575\times 10^{-3} m[/tex]

Using [tex]1mm=10^{-3} m[/tex]

Electric field=E=0.235V/m

T=55 degree C

[tex]T_0=20^{\circ} C[/tex]

[tex]\rho_0=2.82\times 10^{-8}\Omega m[/tex]

[tex]\alpha=3.9\times 10^{-3}/C[/tex]

(a).We know that

[tex]\rho=\rho_0(1+\alpha(T-T_0))[/tex]

Substitute the values

[tex]\rho=2.82\times 10^{-8}(1+3.9\times 10^{-3}(55-20))[/tex]

[tex]\rho=3.2\times 10^{-8}\Omega m[/tex]

(b).Current density,[tex]J=\frac{E}{\rho}[/tex]

Using the formula

[tex]J=\frac{0.235}{3.2\times 10^{-8}}=7.3\times 10^6A/m^2[/tex]

c.Total current,I=JA

Where [tex]A=\pi r^2[/tex]

[tex]\pi=3.14[/tex]

Using the formula

[tex]I=7.3\times 10^6\times 3.14\times (0.0575\times 10^{-3})^2[/tex]

I=0.076A

d.Length of wire=l=2m

[tex]V=El[/tex]

Substitute the values

[tex]V=0.235\times 2=0.47 V[/tex]