Respuesta :
Since [tex]\alpha[/tex] lies in quadrant II and [tex]\beta[/tex] lies in quadrant IV, we expect [tex]\sin\alpha>0[/tex], [tex]\cos\alpha<0[/tex], and [tex]\sin\beta<0[/tex].
Recall the Pythagorean identities,
[tex]\sin^2x+\cos^2x=1\iff1+\cot^2x=\csc^2x\iff\tan^2x+1=\sec^2x[/tex]
It follows that
[tex]\sec\alpha=\dfrac1{\cos\alpha}=-\sqrt{\tan^2\alpha+1}=-\dfrac{13}5\implies\cos\alpha=-\dfrac5{13}[/tex]
[tex]\sin\alpha=\sqrt{1-\cos^2\alpha}=\dfrac{12}{13}[/tex]
[tex]\sin\beta=-\sqrt{1-\cos^2\beta}=-\dfrac45[/tex]
Recall the angle sum identity for sine:
[tex]\sin(\alpha+\beta)=\sin\alpha\cos\beta+\sin\beta\cos\alpha[/tex]
So we have
[tex]\sin(\alpha+\beta)=\dfrac{12}{13}\dfrac35+\left(-\dfrac45\right)\left(-\dfrac5{13}\right)=\boxed{\dfrac{56}{65}}[/tex]
The value of sin(α+β) is 56/65
Trigonometry identity
Given the following parameters
tan α = -12/5 = opposite/adjacent
Determine the hypotenuse using Pythagoras theorem:
hyp² = 12² + 5²
hyp² = 144 + 25
hyp² = 169
hyp = 13
Determine the value of sin α and cos α
sin α = opp/hyp
sin α = 12/13
cos α = adj/hyp = -5/13
Similarly if cosβ=3/5 = adj/hyp
opp^2 = 5^2 - 3^2
opp^2 = 16
opp = 4
sin β = opp/hyp = -4/5
Determine the value of sin(α+β)
sin(α+β) = sinαcosβ + cosαsinβ
sin(α+β) = 12/13(3/5) + (-5/13)(-4/5)
sin(α+β) = 56/65
Hence the value of sin(α+β) is 56/65
Learn more on trigonometry here: https://brainly.com/question/24349828