Respuesta :

Answer:

[tex]\left(3+x\right)^4:\quad x^4+12x^3+54x^2+108x+81[/tex]

Step-by-step explanation:

Considering the expression

[tex]\left(3+x\right)^4[/tex]

Lets determine the expansion of the expression

[tex]\left(3+x\right)^4[/tex]

[tex]\mathrm{Apply\:binomial\:theorem}:\quad \left(a+b\right)^n=\sum _{i=0}^n\binom{n}{i}a^{\left(n-i\right)}b^i[/tex]

[tex]a=3,\:\:b=x[/tex]

[tex]=\sum _{i=0}^4\binom{4}{i}\cdot \:3^{\left(4-i\right)}x^i[/tex]

Expanding summation

[tex]\binom{n}{i}=\frac{n!}{i!\left(n-i\right)!}[/tex]

[tex]i=0\quad :\quad \frac{4!}{0!\left(4-0\right)!}3^4x^0[/tex]

[tex]i=1\quad :\quad \frac{4!}{1!\left(4-1\right)!}3^3x^1[/tex]

[tex]i=2\quad :\quad \frac{4!}{2!\left(4-2\right)!}3^2x^2[/tex]

[tex]i=3\quad :\quad \frac{4!}{3!\left(4-3\right)!}3^1x^3[/tex]

[tex]i=4\quad :\quad \frac{4!}{4!\left(4-4\right)!}3^0x^4[/tex]

[tex]=\frac{4!}{0!\left(4-0\right)!}\cdot \:3^4x^0+\frac{4!}{1!\left(4-1\right)!}\cdot \:3^3x^1+\frac{4!}{2!\left(4-2\right)!}\cdot \:3^2x^2+\frac{4!}{3!\left(4-3\right)!}\cdot \:3^1x^3+\frac{4!}{4!\left(4-4\right)!}\cdot \:3^0x^4[/tex]

[tex]=\frac{4!}{0!\left(4-0\right)!}\cdot \:3^4x^0+\frac{4!}{1!\left(4-1\right)!}\cdot \:3^3x^1+\frac{4!}{2!\left(4-2\right)!}\cdot \:3^2x^2+\frac{4!}{3!\left(4-3\right)!}\cdot \:3^1x^3+\frac{4!}{4!\left(4-4\right)!}\cdot \:3^0x^4[/tex]

as

[tex]\frac{4!}{0!\left(4-0\right)!}\cdot \:\:3^4x^0:\:\:\:\:\:\:81[/tex]

[tex]\frac{4!}{1!\left(4-1\right)!}\cdot \:3^3x^1:\quad 108x[/tex]

[tex]\frac{4!}{2!\left(4-2\right)!}\cdot \:3^2x^2:\quad 54x^2[/tex]

[tex]\frac{4!}{3!\left(4-3\right)!}\cdot \:3^1x^3:\quad 12x^3[/tex]

[tex]\frac{4!}{4!\left(4-4\right)!}\cdot \:3^0x^4:\quad x^4[/tex]

so equation becomes

[tex]=81+108x+54x^2+12x^3+x^4[/tex]

[tex]=x^4+12x^3+54x^2+108x+81[/tex]

Therefore,

  • [tex]\left(3+x\right)^4:\quad x^4+12x^3+54x^2+108x+81[/tex]