contestada

1) Calculate the torque required to accelerate the Earth in 5 days from rest to its present angular speed about its axis. 2) Calculate the energy required. 3) Calculate the average power required.

Respuesta :

Answer:

a) τ = 4.47746 * 10^25 N-m

b) E = 2.06301 * 10^13 J

c) P = 3.25511*10^21 W

Explanation:

Given:

- The radius of earth r = 6.3781×10^6 m

- The angular speed of earth w = 7.27*10^-5 rad/s

- The time taken to reach above speed t = 5 yrs = 1.57784760 * 10^8 s

- The mass of earth m = 5.972 × 10^24 kg

- The inertia of sphere I = 2/5 * m* r^2

Solution:

- The angular acceleration of the earth from rest to w is given by α:

                                α = w / t

                                α = (7.27*10^-5) / (1.57784760 * 10^8)

                                α = 4.60754*10^-13 rad/s^2

- The required torque τ is given by:

                                τ = I*α

                                τ = 2/5 * m* r^2 * α

                           τ = 2/5 *(5.972 × 10^24) * (6.3781×10^6)^2 * (4.60754*10^-13)

                            τ = 4.47746 * 10^25 N-m

- The power required P to turn the earth to the speed w is:

                           P = τ*w

                           P = (4.47746 * 10^25)*(7.27*10^-5)

                           P = 3.25511*10^21 W

- The energy E required is :

                           E = P / t

                           E = (3.25511*10^21) / (1.57784760 * 10^8)

                           E = 2.06301 * 10^13 J

(a) The torque required is 4.47×10²⁵ N-m

(b) The energy required is 2.06×10¹³ J

(c) And the power required is 3.25×10²¹ W

The radius of earth r = 6.3781×10⁶ m

The angular speed of earth v = 7.27×10⁻⁵ rad/s

The time taken to reach the given speed is t = 5 yrs = 1.577 ×10⁸ s

The mass of earth m = 5.972 × 10²⁴ kg

Torque:

(1) The angular acceleration of the earth:

[tex]\alpha = v / t\\\\\alpha= \frac{7.27\times10^-5} {1.577 \times 10^8}\\\\\alpha= 4.6\times10^{-13} rad/s^2[/tex]

The torque of is given by:

τ = Iα

where I is the inertia of the sphere [tex]I = \frac{2}{5} mr^2[/tex]

[tex]\tau = \frac{2}{5} (5.972 \times 10^24) \times(6.3781\times10^6)^2 \times (4.60754*10^-{13})\\\\\tau = 4.47 \times 10^{25} Nm[/tex]

(2) The power required to turn the earth to the speed v is:

P = τv

P = (4.47 × 10²⁵)(7.27×10⁻⁵)

P = 3.25×10²¹ W

(3) The energy E required is given by:

[tex]E = \frac{P}{t}\\\\E = \frac{3.25\times10^{21}} {1.57784760 \times 10^8}\\\\E = 2.06 \times 10^{13} J[/tex]

Learn more about torque:

https://brainly.com/question/3388202?referrer=searchResults