Answer:
A) 3.47rad/a
B) 1.47m/s
C) t = 2.78s
D) 5.4 rotation
Explanation:
(a) angular speed w = dθ/dt = 5t - 1.8t^2
dw/dt = 5 - 3.6t = 0 for max w
so max w occurs at t = 5/3.6 s = 1.39s
so w max = 5*1.39 - 1.8*(1.39)^2 = 3.47 rad/s
(b) tangential speed v = r*w
r = D/2 = 0.5m
so v = 0.5*w = 1.74 m/s
(c) w is positive until 5t = 1.8t^2
so t = 5/1.8s = 2.78s (or t = 0 invalid)
After t = 2.87s, w is negative (starts reversing direction of rotation)
Driving force would actually have to be removed some time before t=2.78s because the roller can't stop instantaneously, but insufficient info to calculate this.
(d) Up to t = 2.78s, θ = 2.5*(2.78)^2 - 0.6*(2.78)^3 rad = 33.95 rad = 5.40 rotations