Respuesta :
Since, you have not mentioned the statements, but I am solving the expression as well as verifying which anyways may be able to make you understand the concept.
Answer:
Both [tex]x<-36\quad \mathrm{or}\quad \:x>72[/tex] are the True solutions.
Step-by-step explanation:
Considering the expression
[tex]\left|6-\frac{x}{3}\right|>18[/tex]
[tex]\mathrm{Apply\:absolute\:rule}:\quad \mathrm{If}\:|u|\:>\:a,\:a>0\:\mathrm{then}\:u\:<\:-a\:\quad \mathrm{or}\quad \:u\:>\:a[/tex]
[tex]6-\frac{x}{3}<-18\quad \mathrm{or}\quad \:6-\frac{x}{3}>18[/tex]
solving
[tex]6-\frac{x}{3}<-18[/tex]
[tex]6-\frac{x}{3}-6<-18-6[/tex]
[tex]-\frac{x}{3}<-24[/tex]
[tex]3\left(-\frac{x}{3}\right)<3\left(-24\right)[/tex]
[tex]\mathrm{Multiply\:both\:sides\:by\:-1\:\left(reverse\:the\:inequality\right)}[/tex]
[tex]\left(-x\right)\left(-1\right)>\left(-72\right)\left(-1\right)[/tex]
[tex]x>72[/tex]
also solving
[tex]6-\frac{x}{3}>18[/tex]
[tex]6-\frac{x}{3}-6>18-6[/tex]
[tex]-\frac{x}{3}>12[/tex]
[tex]-x>36[/tex]
[tex]\mathrm{Multiply\:both\:sides\:by\:-1\:\left(reverse\:the\:inequality\right)}[/tex]
[tex]\left(-x\right)\left(-1\right)<36\left(-1\right)[/tex]
[tex]x<-36[/tex]
[tex]\mathrm{Combine\:the\:intervals}[/tex]
[tex]x<-36\quad \mathrm{or}\quad \:x>72[/tex]
Verifying the solution:
Putting the value x < -36 in [tex]\left|6-\frac{x}{3}\right|>18[/tex]
let suppose x = -37 which is < -36
[tex]\left|6-\frac{x}{3}\right|>18[/tex]
[tex]\left|6-\frac{\left(-37\right)}{3}\right|>18[/tex]
[tex]\mathrm{Apply\:rule}\:-\left(-a\right)=a[/tex]
[tex]=\left|6+\frac{37}{3}\right|[/tex]
[tex]=\left|\frac{55}{3}\right|[/tex]
[tex]\mathrm{Apply\:absolute\:rule}:\quad \left|a\right|=a,\:a\ge 0[/tex]
[tex]\frac{55}{3}>18[/tex]
[tex]\mathrm{Therefore,\:the\:solution\:is}[/tex]
[tex]\mathrm{True}[/tex]
also putting the value x > 72
let suppose x = 73 which is > 72
[tex]|6-\frac{\left(73\right)}{3}|>\:18[/tex]
[tex]=\left|-\frac{55}{3}\right|[/tex]
[tex]\mathrm{Apply\:absolute\:rule}:\quad \left|-a\right|=a[/tex]
[tex]=\frac{55}{3}[/tex]
[tex]\frac{55}{3}>18[/tex]
[tex]\mathrm{Therefore,\:the\:solution\:is}[/tex]
[tex]\mathrm{True}[/tex]
So, both [tex]x<-36\quad \mathrm{or}\quad \:x>72[/tex] are the True solutions.