Respuesta :

Simplification of equation [tex]\frac{n-4}{n^{2}} - \frac{2n-15}{n} + \frac{1}{n} +3[/tex] is [tex]1 + \frac{17}{n} - \frac{4}{n^{2}}[/tex].

Step-by-step explanation:

We have the following complex fraction to simplify:

[tex]\frac{n-4}{n^{2}} - \frac{2n-15}{n} + \frac{1}{n} +3[/tex]

⇒[tex]\frac{n-4}{n^{2}} - \frac{2n-15}{n} + \frac{1}{n} +3[/tex]

{making denominator same of all expressions }

⇒[tex]\frac{n-4}{n^{2}} - \frac{2n-15(n)}{n(n)} + \frac{1(n)}{n(n)} +\frac{3n^{2}}{n^{2}}[/tex]  

⇒ [tex]\frac{n-4}{n^{2}} - \frac{2n^{2}-15n}{n^{2}} + \frac{n}{n^{2}} +\frac{3n^{2}}{n^{2}}[/tex]

⇒[tex]\frac{n-4 -2n^{2} + 15n + n + 3n^{2}}{n^{2}}[/tex]

⇒ [tex]\frac{n^{2}+17n-4}{n^{2}}[/tex]

⇒[tex]1 + \frac{17}{n} - \frac{4}{n^{2}}[/tex]

∴ Simplification of equation [tex]\frac{n-4}{n^{2}} - \frac{2n-15}{n} + \frac{1}{n} +3[/tex] is [tex]1 + \frac{17}{n} - \frac{4}{n^{2}}[/tex].