Answer:
[tex](fg)(7) = - 35[/tex]
Step-by-step explanation:
The given functions are:
[tex]f(x) = {x}^{2} - 14[/tex]
and
[tex]g(x) = 6 - x[/tex]
We want to to find
[tex](fg)(7)[/tex]
Note that:
[tex](fg)(x) = f(x) \times g(x)[/tex]
We substitute the functions to obtain:
[tex](fg)(x) = ( {x}^{2} -1 4 ) \times (6 - x)[/tex]
We now substitute x=7, to get:
[tex](fg)(7) = ( {7}^{2} -1 4 ) \times (6 - 7)[/tex]
This implies that
[tex](fg)(7) =( 49-1 4 ) \times (6 - 7)[/tex]
[tex](fg)(7) = 35 \times - 1 = - 35[/tex]