Respuesta :

Answer:

[tex](fg)(7) = - 35[/tex]

Step-by-step explanation:

The given functions are:

[tex]f(x) = {x}^{2} - 14[/tex]

and

[tex]g(x) = 6 - x[/tex]

We want to to find

[tex](fg)(7)[/tex]

Note that:

[tex](fg)(x) = f(x) \times g(x)[/tex]

We substitute the functions to obtain:

[tex](fg)(x) = ( {x}^{2} -1 4 ) \times (6 - x)[/tex]

We now substitute x=7, to get:

[tex](fg)(7) = ( {7}^{2} -1 4 ) \times (6 - 7)[/tex]

This implies that

[tex](fg)(7) =( 49-1 4 ) \times (6 - 7)[/tex]

[tex](fg)(7) = 35 \times - 1 = - 35[/tex]