Answer:
[tex]\dfrac{d}{dx}f(x)=\dfrac{e^{2x}+e^{-2x}}{2}[/tex]
Step-by-step explanation:
It is given that
[tex]\sinh x=\dfrac{e^x-e^{-x}}{2}[/tex]
[tex]\cosh x=\dfrac{e^x+e^{-x}}{2}[/tex]
[tex]f(x)=\sinh x\cosh x=[/tex]
Using the given hyperbolic functions, we get
[tex]f(x)=\dfrac{e^x-e^{-x}}{2}\times \dfrac{e^x+e^{-x}}{2}[/tex]
[tex]f(x)=\dfrac{(e^x)^2-(e^{-x})^2}{4}[/tex]
[tex]f(x)=\dfrac{e^{2x}-e^{-2x}}{4}[/tex]
Differentiate both sides with respect to x.
[tex]\dfrac{d}{dx}f(x)=\dfrac{d}{dx}\left(\dfrac{e^{2x}-e^{-2x}}{4}\right )[/tex]
[tex]\dfrac{d}{dx}f(x)=\left(\dfrac{2e^{2x}-(-2)e^{-2x}}{4}\right )[/tex]
[tex]\dfrac{d}{dx}f(x)=\left(\dfrac{2(e^{2x}+e^{-2x})}{4}\right )[/tex]
[tex]\dfrac{d}{dx}f(x)=\dfrac{e^{2x}+e^{-2x}}{2}[/tex]
Hence, [tex]\dfrac{d}{dx}f(x)=\dfrac{e^{2x}+e^{-2x}}{2}[/tex].