Option B: [tex](x, y) \rightarrow(x+5, y+3)[/tex] is the rule for the translation
Explanation:
The coordinates of A,B,C are [tex](-3,2)[/tex] ,[tex](-3,-3)[/tex] , [tex](0,-2)[/tex]
The coordinates of A',B',C' are [tex](2,5)[/tex] , [tex](2,0)[/tex] , [tex](5,1)[/tex]
We need to determine the rule for the translation
The rule for the translation is given by
[tex]P(x, y) \rightarrow P^{\prime}(x+a, y+b)[/tex]
Let us determine the translation from A to A'
[tex]A(-3,2)\rightarrow A^{\prime}(-3+a, 2+b)\rightarrow A'(2,5)[/tex]
Thus, we have,
[tex]\begin{aligned}-3+a &=2 \\a &=5\end{aligned}[/tex] and [tex]\begin{array}{r}2+b=5 \\b=3\end{array}[/tex]
Thus, the rule is given by
[tex](x, y) \rightarrow(x+5, y+3)[/tex]
Therefore, Option B is the correct answer.