1. In the diagram, AA'B'C' is an image of AABC. Which rule describes this translation?
O(x, y) → (x-5,y-3)
O(x, y) + (x + 5, y + 3)
O(x,y) → (x-3, y-5)
O(x, y) (x+3, y + 5)

1 In the diagram AABC is an image of AABC Which rule describes this translation Ox y x5y3 Ox y x 5 y 3 Oxy x3 y5 Ox y x3 y 5 class=

Respuesta :

Option B: [tex](x, y) \rightarrow(x+5, y+3)[/tex] is the rule for the translation

Explanation:

The coordinates of A,B,C are [tex](-3,2)[/tex] ,[tex](-3,-3)[/tex] , [tex](0,-2)[/tex]

The coordinates of A',B',C' are [tex](2,5)[/tex] , [tex](2,0)[/tex] , [tex](5,1)[/tex]

We need to determine the rule for the translation

The rule for the translation is given by

[tex]P(x, y) \rightarrow P^{\prime}(x+a, y+b)[/tex]

Let us determine the translation from A to A'

[tex]A(-3,2)\rightarrow A^{\prime}(-3+a, 2+b)\rightarrow A'(2,5)[/tex]

Thus, we have,

[tex]\begin{aligned}-3+a &=2 \\a &=5\end{aligned}[/tex]   and   [tex]\begin{array}{r}2+b=5 \\b=3\end{array}[/tex]

Thus, the rule is given by

[tex](x, y) \rightarrow(x+5, y+3)[/tex]

Therefore, Option B is the correct answer.