Answer:
See explanation
Step-by-step explanation:
Assuming your system is:
[tex]x + 3y = 4[/tex]
[tex]3x - 5y = 8[/tex]
Then make x the subject in the first equation to get:
[tex]x = 4 - 3y[/tex]
Put this equation into the second equation to get:
[tex]3(4 - 3y) - 5y = 8[/tex]
[tex]12 - 9y - 5y = 8[/tex]
[tex] - 9y - 5y = 8 - 12[/tex]
[tex] -14y = - 4[/tex]
[tex]y = \frac{ - 4}{ - 14} = \frac{2}{7} [/tex]
This means that:
[tex]x = 4 - 3 \times \frac{2}{7} [/tex]
[tex]x = 4 - \frac{6}{7} = \frac{22}{7} [/tex]