Respuesta :

Answer:

[tex]6\dfrac{23}{30} s[/tex]

Step-by-step explanation:

The first step in simplying

[tex]$4s+\frac{1}{6}s +2\frac{3}{5}s $[/tex]

is to bring the mixed number [tex]2\frac{3}{5}s[/tex] into the form of an improper fraction:

[tex]$2\dfrac{3}{5}s = (2+\frac{3}{5})s =(\frac{10}{5} +\frac{3}{5})s = \frac{13}{5}s $[/tex]

Therefore, the expression now becomes

[tex]$4s+\frac{1}{6}s +\frac{13}{5}s $[/tex]

and to simplify further we find the common denominator of the fractions which is

[tex]6*5 =30[/tex],

therefore,

[tex]$4s+\frac{5}{30}s +\frac{78}{30}s $[/tex]

[tex]$\frac{120}{30} s+\frac{5}{30}s +\frac{78}{30}s $[/tex]

add the numerator and get:

[tex]\dfrac{203}{30} s[/tex]

as a mixed number this is

[tex]6\dfrac{23}{30} s[/tex]

Thus,

[tex]$\boxed{4s+\frac{1}{6}s +2\frac{3}{5}s = 6\dfrac{23}{30} s} $[/tex]