The linearized regression equation for an exponential data set is log ŷ = 0.14x + 0.4, where x is the number of years and y is the population. What is the predicted population when x = 15? Round your answer to the nearest whole number.
A.3
B.126
C.316
D.9537

Respuesta :

Option C: [tex]316[/tex] is the predicted population when [tex]x=15[/tex]

Explanation:

The regression equation for an exponential data is [tex]\log y=0.14x+0.4[/tex]

Where x is the number of years and

y is the population

We need to determine the predicted population when [tex]x=15[/tex]

The population x can be determined by substituting [tex]x=15[/tex] in the equation [tex]\log y=0.14x+0.4[/tex]

Thus, we have,

[tex]\log y=0.14(15)+0.4[/tex]

[tex]\log y=2.1+0.4[/tex]

[tex]\log y=2.5[/tex]

Using the logarithmic definition [tex]\log _{a}(b)=c[/tex] then [tex]b=a^{c}[/tex]

[tex]\log _{10}(y)=2.5 \Rightarrow y=10^{2.5}[/tex]

[tex]y=316.22776 \ldots[/tex]

Rounding off to the nearest whole number, we get,

[tex]y=316[/tex]

Thus, the predicted population when [tex]x=15[/tex] is 316

Hence, Option C is the correct answer.