Answer:
Explanation:
Commutative laws: p ∧ q ≡ q ∧ p
p ∨ q ≡ q ∨ p
Associative laws: (p ∧ q) ∧ r ≡ p ∧ (q ∧ r)
(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)
Distributive laws: p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
Identity laws: p ∧ t ≡ p
p ∨ c ≡ p
Negation laws: p ∨ ∼p ≡ t
p ∧ ∼p ≡ c
Double negative law: ∼(∼p) ≡ p
Idempotent laws: p ∧ p ≡ p
p ∨ p ≡ p
Universal bound laws: p ∨ t ≡ t
p ∧ c ≡ c
De Morgan’s laws: ∼(p ∧ q) ≡ ∼p ∨ ∼q
∼(p ∨ q) ≡ ∼p ∧ ∼q
Absorption laws: p ∨ (p ∧ q) ≡ p
p ∧ (p ∨ q) ≡ p
Negations of t and c: ∼t ≡ c
∼c ≡ t