Respuesta :
To solve this problem we will apply the concepts related to Power, such as the product of voltage and current. Likewise, Power is defined as the amount of energy per unit of time, therefore, using this relationship we will solve the second part.
PART A)
We know that Power is,
[tex]P = VI[/tex]
Substitute [tex]25.0V[/tex] for V and 12.0 A for I in the expression,
[tex]P=(25.0V)(12.0A)[/tex]
[tex]P = 300W[/tex]
Therefore the power deliver to the body is 300W
PART B) Converting the time to SI,
[tex]t = 3ms = 0.003s[/tex]
Therefore if we have that the expression for energy is,
[tex]P = \frac{E}{t} \rightarrow E = Pt[/tex]
Here,
E = Energy,
P = Power,
t = Time,
Replacing,
[tex]E = (300W)(0.003s)[/tex]
[tex]E = 0.9J[/tex]
Therefore the energy transferred is equal to 0.9J
This question involves the concepts of electrical power and energy.
(a) The power delivered by the defibrillator is "300 W".
(b) The energy trasferred is "0.9 J".
(a) POWER
The electrical power delivered by the defibrillator can be given by the following formula:
[tex]P=IV[/tex]
where,
- P = electrical power = ?
- I = electric current = 12 A
- V = voltage = 25 V
Therefore,
[tex]P=(12\ A)(25\ V)[/tex]
P = 300 W
(b) Energy
The transferred energy can be given by the following formula:
[tex]P=\frac{E}{t}\\\\E=Pt[/tex]
where,
- E = Energy = ?
- P = Power = 300 W
- t = time = 3 ms = 3 x 10⁻³ s
Therefore,
[tex]E=(300\ W)(3\ x\ 10^{-3}\ s)\\[/tex]
E = 0.9 J
Learn more about electrical power here:
https://brainly.com/question/7963770