Respuesta :

Answer:

[tex]22\ m < x < 74\ m[/tex]

Step-by-step explanation:

Let

x ----> the length for the third side

we know that

The Triangle Inequality Theorem states that the sum of any 2 sides of a triangle must be greater than the measure of the third side

Applying the triangle inequality theorem

1) [tex]26+48> x[/tex]

solve for x

[tex]74> x[/tex]

Rewrite

[tex]x < 74\ m[/tex]

2) [tex]26+x>48[/tex]

solve for x

subtract 26 both sides

[tex]x> 22\ m[/tex]

therefore

The range of  possible lengths, in meters, for the third side is equal to

[tex]22\ m < x < 74\ m[/tex]

The range of the possible length of the third side of the triangle is 22 to 74 (exclusive)

Assume the lengths of a triangle are x, y and z.

The following are the possible inequalities that relate the side lengths

[tex]x + y > z[/tex]

[tex]y + z > x[/tex]

[tex]x + z > y[/tex]

The unknown side length is x.

So, we have:

[tex]x + 26 > 48[/tex]

[tex]48 + 26 > x[/tex]

[tex]x + 48 > 26[/tex]

Solve for x in the three inequalities

[tex]x + 26 > 48[/tex]

[tex]x > 22[/tex]

[tex]48 + 26 > x[/tex]

[tex]74 > x[/tex]

[tex]x + 48 > 26[/tex]

[tex]x > -22[/tex]

The values of x cannot be negative.

So, we ignore the inequality [tex]x > -22[/tex]

We are left with

[tex]74 > x[/tex] and [tex]x > 22[/tex]

Combine the inequalities

[tex]74 > x > 22[/tex]

Rewrite as:

[tex]22 < x < 74[/tex]

Hence, the range of the possible length is 22 to 74 (exclusive)

Read more about triangle inequalities at:

https://brainly.com/question/18284285