Respuesta :

Solution:

1)

[tex]-6x + 14\leq 28[/tex]

Solve the inequality for "x"

From given,

[tex]-6x + 14\leq 28[/tex]

[tex]\mathrm{Subtract\:}14\mathrm{\:from\:both\:sides}\\\\-6x+14-14\le \:28-14\\\\Simplify\\\\-6x\le \:14\\\\\mathrm{Multiply\:both\:sides\:by\:-1\:\left(reverse\:the\:inequality\right)}[/tex]

When, we multiply or divide both sides of inequality by negative number, then we must flip the inequality sign

[tex]\left(-6x\right)\left(-1\right)\ge \:14\left(-1\right)\\\\\mathrm{Simplify}\\\\6x\ge \:-14\\\\\mathrm{Divide\:both\:sides\:by\:}6\\\\\frac{6x}{6}\ge \frac{-14}{6}\\\\x \geq -2.333[/tex]

The solution set is given as:

[tex]-6x+14\le \:28\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:x\ge \:-\frac{7}{3}\:\\ \:\mathrm{Decimal:}&\:x\ge \:-2.33333\dots \\ \:\mathrm{Interval\:Notation:}&\:[-\frac{7}{3},\:\infty \:)\end{bmatrix}[/tex]

---------------------------------------------------------------------------------------------------

2)

[tex]9x + 15< - 12[/tex]

Solve the inequality for "x"

From given,

[tex]9x+15<-12\\\\\mathrm{Subtract\:}15\mathrm{\:from\:both\:sides}\\\\9x+15-15<-12-15\\\\\mathrm{Simplify}\\\\9x<-27\\\\\mathrm{Divide\:both\:sides\:by\:}9\\\\\frac{9x}{9}<\frac{-27}{9}\\\\\mathrm{Simplify}\\\\x < -3[/tex]

The solution set is given as:

[tex]9x+15<-12\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:x<-3\:\\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:-3\right)\end{bmatrix}[/tex]