Respuesta :
The resultant angular velocity = 1.19 rad/s
Explanation:
When any body rotates about its axis , the angular momentum of the body remains constant .
Thus the product of moment of inertia and its angular velocity remains constant .
In first case
The moment of inertia of cylinder = 41.8 kg m²
and Angular velocity = 2.27 rad/s
Thus angular momentum L₁ = 41.8 x 2.27 N-m s
In the second case
The moment of inertia = 41.8 + 38.0 = 79.8 kg m²
Suppose the angular velocity = ω
Thus angular momentum L₂ = 79.8 x ω
But according to principle of conservation of momentum
L₁ = L₂
41.8 x 2.27 = 79.8 x ω
Thus ω = [tex]\frac{41.8x2.27}{79.8}[/tex]
ω = 1.19 rad/s
Answer:
Final Angular Velocity=[tex]\omega[/tex]=1.189 rad/s
Explanation:
Given Data:
Moment of Inertia of 1st cyclinder=[tex]I_1=41.8 kg/m^{2}[/tex]
Angular Velocity of 1st cyclinder=[tex]\omega_1[/tex]=2.27 rad/s
Moment of Inertia of After contact=[tex]I_2=(41.8+38) kg/m^{2}=79.8 kg/m^{2}[/tex]
Required:
Final Angular velocity =[tex]\omega[/tex]=?
Formula:
Angula Momentum=L=[tex]I\omega[/tex]
Solution:
According to the conservation of angular momentum:
[tex]L_1=L_2[/tex]
[tex]I_1 \omega_1=I_2\omega\\41.8*2.27=(41.8+38)*\omega\\\omega=\frac{41.8*2.27}{79.8}\\\omega= 1.189\ rad/s[/tex]
Final Angular Velocity=[tex]\omega[/tex]=1.189 rad/s