Answer:
The MOE for 80% confidence interval for μ is 5.59.
Step-by-step explanation:
The random variable X is defined as the number of square feet per house.
The random variable X is Normally distributed with mean μ and standard deviation σ = 137.
The margin of error for a (1 - α) % confidence interval for population mean is:
[tex]MOE=z_{\alpha /2}\times\frac{\sigma}{\sqrt{n}}[/tex]
Given:
n = 19
σ = 137
[tex]z_{\alpha /2}=z_{0.20/2}=z_{0.10}=1.282[/tex]
Compute MOE for 80% confidence interval for μ as follows:
[tex]MOE=1.282\times\frac{137}{\sqrt{19}}=1.282\times4.36=5.58952\approx5.59[/tex]
Thus, the MOE for 80% confidence interval for μ is 5.59.