A bacteria colony increases in size at a rate of 4.0565e1.3t bacteria per hour. If the initial population is 54 bacteria, find the population four hours later. (Round your answer to the nearest whole number.) bacteria

Respuesta :

Answer:

Population of bacteria four hours later [tex]A=616.5187[/tex]  or nearest whole number

[tex]A=616[/tex]

Step-by-step explanation:

Given,

Let amount of bacteria four hours later is=A

Rate of increase of bacteria per hour  [tex]=\frac{\partial x}{\partial t}=4.0565e^{1.3t}[/tex]

Initial population of bacteria is =54

Time 4 hours

Find the population of bacteria 4 hours later

Solution,

[tex]\int_{54}^{A}dx=\int_{0}^{4}4.0565e^{1.3t}dt[/tex]

[tex]\left [ x \right ]_{54}^{A}=4.0565/1.3\left [e^{1.3t} \right ]_{0}^{4}[/tex]

[tex]A-54=4.0565/1.3\left ( e^{1.3\times 4} -1\right )[/tex]

[tex]A-54=562.5187301[/tex]

[tex]A=562.5187301+54[/tex]

[tex]A=616.5187[/tex]

Population of bacteria 4 hours later is[tex]A=616[/tex]

The population of the bacteria four hours later was 39708

What is an exponential function?

An exponential function is in the form:

y = abˣ

Where a is the initial value of y and b is the multiplication factor.

Given that the  initial population is 54 bacteria and it increases in size at a rate of 4.0565e^(1.3t) bacteria per hour. In 4 hours:

[tex]Bacteria\ population=54 * 4.0565e^{1.3*4}=39708[/tex]

The population of the bacteria four hours later was 39708

Find out more on exponential function at: https://brainly.com/question/12940982