Respuesta :
Answer:
a) 0.000112 M/s is the average reaction rate between 0.0 seconds and 1500.0 seconds.
b) 0.00011 M/s is the average reaction rate between 200.0 seconds and 1200.0 seconds.
c) Instantaneous rate of the reaction at t=800 s :
Instantaneous rate : [tex]\frac{0.031 M}{800.0 s}=3.875\times 10^{-5} M/s[/tex]
Explanation:
Average rate of the reaction is given as;
[tex]R_{avg}=-\frac{\Delta A}{\Delta t}=\frac{A_2-A_1}{t_2-t_1}[/tex]
a.) The average reaction rate between 0.0 s and 1500.0 s:
At 0.0 seconds the concentration was = [tex]A_1=0.184 M[/tex]
[tex]t_1=0.0s[/tex]
At 1500.0 seconds the concentration was = [tex]A_2=0.016 M[/tex]
[tex]t_2=1500 s[/tex]
[tex]R_{avg]=-\frac{0.016 M-0.184 M}{1500.0 s-0.0 s}=0.000112 M/s[/tex]
0.000112 M/s is the average reaction rate between 0.0 seconds and 1500.0 seconds.
b.) The average reaction rate between 200.0 s and 1200.0 s:
At 0.0 seconds the concentration was = [tex]A_1=0.129 M[/tex]
[tex]t_1 =200.0 s[/tex]
At 1500.0 seconds the concentration was = [tex]A_2=0.019M[/tex]
[tex]t_2=1200 s[/tex]
[tex]R_{avg]=-\frac{0.019 M-0.129M}{1200.0s-200.0s}=0.00011 M/s[/tex]
0.00011 M/s is the average reaction rate between 200.0 seconds and 1200.0 seconds.
c.) Instantaneous rate of the reaction at t=800 s :
At 800 seconds the concentration was = [tex]A=0.031 M[/tex]
[tex]t =800.0 s[/tex]
Instantaneous rate : [tex]\frac{0.031 M}{800.0 s}=3.875\times 10^{-5} M/s[/tex]